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Abstract
The use of D-Wave’s Leap Hybrid solver is demonstrated here in solving a Knapsack
optimization problem: finding meal combinations from a fixed menu that fit a diner's constraints.
This is done by first formulating the optimization problem as a Constrained Quadratic Model
(CQM) and then submitting it to a quantum annealer. We highlight here the steps needed, as
well as the implemented code, and provide solutions from a Chicken & Waffle restaurant menu.
Additionally, we discuss how this model may be generalized to find optimal drug molecules
within a large search space with many complex, and often contradictory, structures and property
constraints.
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Introduction
The goal of computational drug design is to identify a set of molecules that can interact with a
target protein to produce a desired therapeutic effect. This can be formulated as an optimization
problem, where the objective is to find the molecular structure(s) that optimize a given set of
criteria. For example, the optimization problem could involve maximizing the binding affinity
between the drug molecule and the target protein while minimizing potential side effects or
toxicity. The optimization problem could also involve finding the molecular structure that satisfies
certain constraints, being able to pass through the blood-brain barrier, or having a specific
chemical composition. In the past, computational drug design approaches used various
methods such as molecular docking, molecular dynamics simulations, and machine learning
algorithms to look at possible molecular structures and identify those that best have the required
properties. This was a design problem, i.e. how to change a molecule from a limited set, so it
will comply with the required objectives. A different approach is to treat this as an optimization
problem, i.e. design a large chemical space and use multi-objective optimization algorithms to
find the set of molecules that have the required objectives. An efficient way of doing this is
running the CQM algorithm on a Quantum Annealer, as we have been doing.
However, translating the structure and properties of molecules to a CQM is not a simple task. To
simplify it, we have built a knapsack optimization-type “toy model”. The model implements a
restaurant menu in a CQM formalism and can be used to implement, test, and evaluate the run
time of such formalism.

Drug design is a subsection of a set of problems that belongs to the family of “Large
Optimization Problems”. These refer to computational problems that involve finding the best
solution among many possible alternatives, sometimes also called "large-scale linear
programming problems'' (Luo et al., 2018). These problems are typically characterized by many
variables and constraints, making them computationally complex and difficult to solve using
classical computing methods. Large optimization problems arise in many fields, including
finance, logistics, engineering, and scientific research, and often require the use of advanced
mathematical techniques and algorithms to solve (Wang et al., 2019). In the case of drug
design, the solution alternatives are different molecules, and the constraints can be properties
such as binding affinity, toxicity, solubility, etc. These constraints are often a balancing act
among many factors or appear to be conflicting, such as requiring the drug molecule to be
soluble enough for oral administration despite targeting a binding pocket in a hydrophobic
region, which adds even more complexity to a classical computing optimization algorithm.

In the context of quantum computing, large optimization problems are particularly challenging,
as they require the development of specialized quantum algorithms and the use of specialized
hardware such as quantum annealers. The ability to solve large optimization problems is an
important area of research and development in the field of quantum computing, with potential
applications in a wide range of fields (Hu et al., 2020) (Bian et al., 2019).

Quantum annealers are specialized quantum computing devices that are designed to solve
optimization problems (King et al., 2018). These devices use a process called quantum
annealing to search for the lowest energy state of a given problem, which can be used to find



the optimal solution. One of the key advantages of quantum annealers is their ability to
efficiently handle large and complex optimization problems that are difficult to solve using
classical computing methods (Rieffel et al., 2015). This makes them particularly useful in fields
such as finance, logistics, and scientific research, where large-scale optimization problems are
common. Despite their potential, quantum annealers are still relatively new and their capabilities
are not yet fully understood. However, ongoing research and development in the field of
quantum computing are likely to result in continued improvements and advancements in
quantum annealing technology (Yarkoni et al., 2022) (Cao et al., 2019).

In this paper, we will demonstrate the use of a quantum annealer (D-Wave’s Leap Hybrid solver
https://www.dwavesys.com/solutions-and-products/systems/ ) to solve a “toy model”
optimization problem. We will show how to formulate the specific optimization problem to a
Constrained Quadratic Model (CQM) and then how to submit it to a quantum annealer.

Methods
The knapsack optimization problem is a well-known combinatorial optimization problem that
involves selecting a subset of items from a given set, subject to a weight constraint, in a way
that maximizes the total value of the selected items. The problem is named after the idea of
packing a knapsack with items of different weights and values (Kellerer et al., 2004).

The knapsack optimization problem has been studied extensively in classical optimization and
computer science, and has also been studied in the context of quantum annealing. In the
context of quantum annealing, the knapsack problem is typically formulated as a quadratic
unconstrained binary optimization (QUBO) problem, which is a mathematical formulation that
can be solved on quantum annealers such as D-Wave’s system (Feld et al., 2019) (Awasthi et
al., 2023). Various methods have been proposed for solving the knapsack problem using
quantum annealers, including hybrid classical-quantum approaches that combine classical
optimization techniques with quantum annealing. The knapsack optimization problem is an
important benchmark problem for testing the performance of quantum annealers and is also
relevant for applications in areas such as finance, logistics, and resource allocation. Here we
are using a constrained version of the model that is applicable to drug design.

We have used a “Chicken & Waffle” restaurant menu as an example for the Knapsack
optimization problem, with the added constraint of being able to choose a single item from each
category. Here specifically, the user can choose from 4 waffle choices, 8 smears, 7 chicken
choices , 7 drizzles, and 7 sides, which makes for 10,976 potential combinations. The
constraints that can be applied here are varied, and here we chose to find the cheapest meal
with one selection from each category and the entire meal to be less than 700 calories.

Constrained Quadratic Model
The CQM problems are formed by trying to minimize an objective that is subject to multiple
constraints
(https://www.dwavesys.com/media/rldh2ghw/14-1055a-a_hybrid_solver_for_constrained_quadr
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atic_models.pdf). Equations 1-3 show how one would formulate the objective and constraints
suitably for the CQM (where are binary variables, and are real number coefficients𝑥
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Equation 2, the equality constraint:
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Equation 3, the inequality constraint:
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For our problem, we can think of every item on the menu as a possible decision. Since every
item can either be part of the order or not, we can represent each decision as a binary variable.
Going forward, we will refer to every item on the menu as a binary variable . Our problem has𝑥

𝑖

33 items on the menu, so we will have – represented in our model. A given can be𝑥
1

𝑥
33

𝑥
𝑖

either 0, which would represent the exclusion of the corresponding item, or 1, which would
represent its inclusion.

Applying Objectives to the CQM model
The objective of the optimization is to find the cheapest meal given the constraints. For our
example, we want to multiply the price of each item by the respective binary variable and𝑝
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add those values together. Equation 4 shows how the CQM Equation 1 is applied in this case:

Equation 4: 8𝑥
1
+ 8𝑥

2
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3
+... + 4𝑥

31
+ 4. 75𝑥

32
+ 4𝑥

33

If an item is included in the order, its corresponding binary variable will be 1. Therefore, its
coefficient - the price of the item - will be included in the total sum. If the item is excluded from
the order, its binary variable will be 0, and therefore it will not contribute to the total price.
By setting this objective in the CQM model, the quantum annealer will attempt to return the
cheapest solutions.

Applying Constraints to the CQM model
The “Chicken and Waffle” problem formulates that each meal will include only a single item from
each item type: a one-hot constraint. For example, there can’t be two different waffles in the
same order. This is similar to choosing a single fragment for each location in a molecular design
problem. We have used an equality constraint to represent this in our model. For example, there
are 4 waffle choices represented by the binary variables – . Now we can represent that𝑥

1
𝑥
4

constraint by summing those binary variables and setting them equal to 1. Equation 5 shows
how the CQM Equation 3 is applied in this case.
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Equation 5: 𝑥
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Since the variables can be either 0 or 1, exactly one of the binary variables involved in the sum
can be 1, and the rest will have to be zero. It’s not possible for all of them to be 0 because that
would equate 0 to 1, which is false. This will therefore incentivize solutions where exactly one
variable in the set is chosen.

A different constraint is used when limiting the number of calories. Here, we used an inequality
constraint by multiplying the calories of each item by the respective binary variable, summing
the binary variables, and the inequality to less than or equal to 700. Equation 6 shows how the
CQM Equation 2 is applied in this case.

Equation 6: 358𝑥
1
+ 284𝑥

2
+ 244𝑥

3
+... + 80𝑥

31
+ 200𝑥

32
+ 270𝑥

33
− 700 ≤ 0

Results
In Table 1 we enumerate all possible “Chicken and Waffle” menu options, with the definition of
their item type, as well as price & calories per each item. These definitions were used to build
our CQM by adding the objective function (minimize the total meal price), one-hot constraints
(only one item per category may be chosen), and inequality constraints (total calories must be
less than or equal to 700), as described above, using the D-Wave API. The model was then
submitted to the quantum annealer. 

The CQM is continually sampled over a set period. The results are returned as a list of values
assigned to our binary variables for each “read”. Based on the CQM implementation, if a
variable was unused in the solution, it will be zero; if it was used, the variable will be 1. The
associated "energy" (in this case, the total price of the meal) for that sample, the number of
times that same solution was seen in overall samplings of the quantum annealer, and whether
all constraints were met are returned as well. The energy and number of occurrences help
contextualize the optimization problem corresponding to the model. For tighter constraints, one
may begin to see higher-priced meal options with a large number of occurrences, as the
lower-priced regions of the feature space are now less accessible.

Table 2 shows the results of the CQM runs, specifically the best meal combinations identified by
the CQM that obeys the following constraints: one item type per meal, minimal price & the total
number of calories below 700.

The Supporting Information includes instructions on how to build, submit and collect the results
using the D-Wave API. It also includes a git repository of the code used.



Conclusion
In this manuscript, we have demonstrated how to turn an optimization problem into an objective
and constraints; build a CQM model; and submit that model to D-Wave. We are also providing
instructions on how to submit and run the same problem on D-Wave.

While our "Chicken and Waffle" problem as defined here had several possible solutions, it is
possible to alter or add constraints in such a way that no "perfect" solution is possible. For
example, if one were to specify that the total calories must be less than or equal to 500,
honoring the inequality constraint required breaking at least one of the one-hot constraints. In
this case, the quantum annealer will still return the set of sampling reads, and the constraints
that were unsatisfied will be indicated. For real-world optimization problems, this presents a
unique benefit: one may still consider solutions that honor as many constraints as possible while
allowing for the reality that no solution exists that satisfies all constraints. A common example in
drug design is when you are designing a molecule with an ideal set of properties that can never
be obtained but identifying molecules that are close to those set of properties which may be
“good enough”. An example may be searching for a molecule that has a low molecular weight
(important for passing the blood-brain barrier) but a high surface area (important for drugs that
disturb protein-protein interactions). You may not find the ideal molecules, but molecules that
are close to the Pareto front are still valuable.

A simple approach to solving the Knapsack problem is to use classical computers, i.e. to
enumerate and check every single possible combination and make a list of the values that the
cost function yields for each. Then the combinations may be sorted by their price and calorie
count to find the best solution. This method works well for small data sets but scales
exponentially as the number of features and the number of variables grow.

For the problem presented here, there are 10,976 potential combinations. The minimal run time
on D-Wave’s hybrid solver service is 5 seconds, which was also the total run time in our case.
We would expect the same problem to run faster on a classical CPU, i.e. a shorter total run
time.
On the other hand, we would expect to see a much more pronounced time difference for larger
optimization problems. For example, when processing a library of a billion molecules, the total
run time was about 220 CPU hours on Google Cloud Platform. However, on the D-Wave
quantum annealer, using their hybrid solver service, it took a total run time of 5 seconds to
obtain around 50 samples of molecules that fit the constraints (5 seconds is the minimal run
time) from the same billion molecule library. If the number of molecules (available solutions)
were to increase, and the number of possibilities to check grows commensurately, we can intuit
that the D-Wave quantum annealer solution will scale to require substantially fewer resources
than the classical CPU solution.

We have shown that the CQM can solve multi-object optimization problems on an expedited
timescale. This lets us use the CQM in solving much larger optimization problems and makes
the CQM a valid choice for molecular drug design.



Supporting Information:
Git repository:
We have also included a git repo and our example dataset for this paper. In order to use the
example, please download the source for this example from our GitLab repository. You can go
to D-Wave to request free trial time on the QPU, add your API key to the configuration file,
update the CSV with your own delicious options, and start the container!

D-Wave Instruction:
D-Wave offers an API called D-Wave Ocean that gives us tools to build the CQM and submit the
model to the D-Wave QPU.
There are instructions, tutorials, and examples that can help you to formulate and submit your
models.

https://github.com/pqb-mb/pqb-cqm-example
https://cloud.dwavesys.com/leap/signup/
https://github.com/pqb-mb/pqb-cqm-example/blob/main/solver.env
https://docs.ocean.dwavesys.com/en/stable/
https://www.youtube.com/watch?v=qaGUNL28TZg
https://github.com/dwave-examples/job-shop-scheduling-cqm


Tables
Table 1. All possible “Chicken and Waffle” menu options, with the definition of their item type, as
well as price & calories for each option.

name item_type price calories

The Classic waffle $8.00 358

Sweet Potato waffle $8.00 284.4

The Gingerbread waffle $9.00 244.9

The Vegan waffle $9.00 278.9

Strawberry-Creme smear $1.75 70

Chocolate-Hazelnut smear $1.75 72

Maple-Pecan smear $1.75 165

Baby-Blueberry smear $1.75 120

Vanilla-Almond smear $1.75 90

Orange-Honeycomb smear $1.75 70

Peach-Apricot smear $1.75 70

Maple Syrup smear $2.25 160

Two chicken drumsticks chicken $7.00 210

A chicken cutlet chicken $6.00 130

Three wings chicken $10.00 430

Four drumsticks chicken $10.00 420

A panko-crusted chicken cutlet chicken $6.00 210

Four wings chicken $12.00 573

Vegetarian Cutlet chicken $7.00 270

Sweet Whiskey Creme drizzle $2.00 289

Honey Dijon drizzle $2.00 46

Caribbean Calypso drizzle $2.00 50

Asian Plum Sauce & Almonds drizzle $2.00 35

Candied Pecans drizzle $2.00 132

Maple Syrup drizzle $2.00 104

Caramel & Salted Cashew drizzle $2.00 65

A pair of eggs and creamy grits side $4.75 362

Collard Greens (Spicy) side $4.00 63

Smooth Grits side $4.00 182

Sautéed Squash & Onions side $4.00 86

Fresh-Cut Fruit side $4.00 80

Southern Potato Salad side $4.75 200

Mac & Cheese side $4.00 270



Table 2. The best meal combinations as identified by the CQM and obeying the following
constraints: one item type per meal, minimal price & the total number of calories below 700.

Waffle Smear Chicken Drizzle Side
Meal
Price

Total
Calories

Sweet
Potato

Orange-
Honeycomb Chicken cutlet

Caribbean
Calypso

Sautéed Squash
& Onions 21.75 620.4

Sweet
Potato

Peach-
Apricot Chicken cutlet

Caramel &
Salted Cashew

Collard Greens
(Spicy) 21.75 612.4

Sweet
Potato

Baby-
Blueberry Chicken cutlet

Caribbean
Calypso

Sautéed Squash
& Onions 21.75 670.4

Sweet
Potato

Peach-
Apricot

Panko-crusted
chicken cutlet

Caramel &
Salted Cashew

Collard Greens
(Spicy) 21.75 692.4

Sweet
Potato

Chocolate-
Hazelnut Chicken cutlet

Caramel &
Salted Cashew Fresh-Cut Fruit 21.75 631.4
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